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Accurate predictions of uncertainties in computed solutions to neutral particle

transport problems are of extreme importance in applications such as shielding de-

sign. Often, uncertainties are measured using a Monte Carlo method, where cross

section data is sampled at numerous points, the Boltzmann transport simulation code

is run with each sampled data point, and the variance of the outputs is quantified. We

present an alternative method to this potentially expensive procedure, where solution

sensitivities are computed simultaneously with the solution and variances are then

computed using these sensitivities. Solutions and sensitivities together take approx-

imately 2 to 3 times longer to solve than solutions alone, but the resulting procedure

for uncertainty quantification is far faster than the hundreds of runs often required

for the sampling method. Numerical results on a variety of test cases demonstrate

that uncertainties measured using the sensitivity analysis approach differ from those

computed with the Monte Carlo technique by very small amounts.

1. INTRODUCTION

The ability to model transport of neutral particles, such as neutrons and photons, through matter is of importance to
many scientific and engineering applications. These application areas include reactor and shielding design, develop-
ment of medical radiation treatment, and nuclear well logging. Often deterministic models of these physical systems
give rise to the use of the linear Boltzmann transport equation (BTE), an integro-differential equation modeling the
particle flux at a given position and energy level through a material in a given direction. Much time and effort has been
spent on developing effective solution methods for this problem. See [18] and the references therein for more details.

The BTE has two parameter fields, the scattering and absorbing cross sections, which are usually given as input.
The scattering cross section measures how many particles are scattered from a specific energyE 0 moving in direction

0 to energyE and direction 
. The absorbing cross section is a measure of how easily the particles move through the
material and is usually related to the optical depth of the given material. Often, these parameters are given as the result
of experiments and can suffer from experimental error. These errors result in uncertainty in the simulation solution,
and it is critical for many applications to understand the magnitude of this uncertainty.

1This work was performed under the auspices of the U.S. Dept. of Energy by University of California, Lawrence Livermore National Laboratory
under contract W-7405-ENG-48.
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Common techniques for assessing these uncertainties generally require numerous runs of the simulation code with
differing values for the cross sections. These techniques use various sampling strategies, such as Latin hypercube, to
determine the inputs for these runs, and they use either Bayesian or Frequentist methods for analyzing the collection
of solutions and for quantifying the uncertainties [16]. Other methods for quantifying uncertainties compute a solution
sensitivity and then use the data covariance to get an estimate of solution uncertainty. The sensitivity analysis approach
requires far fewer simulation code runs and less overall time. Sensitivities can easily be computed for BTE solutions
as is shown in [20], where both forward and backward in-time methods are used to evaluate the sensitivities.

In this paper, we present our method of computing and using first-order sensitivities to estimate the uncertainty of
solutions with respect to the cross sections present in the problem. We apply transformations in order to enhance the
ability of the first-order sensitivities to approximate the full sensitivities [14] and compare the results with uncertainties
computed using a sampling approach. Results show that the two methods compare well but that the sensitivity analysis
approach is far faster than the sampling one.

The paper is organized in seven sections. In the following section we overview the BTE and the multigroup ap-
proximation. Section 3 discusses the two uncertainty quantification methods we compare, and Section 4 details our
discretization of the BTE. Section 5 discusses the implementation of the sensitivity and sampling approach outlining
the mathematical formulation of the sensitivity calculation. Section 6 presents numerical results comparing the two
uncertainty estimates for both single group and three-group problems. The last section gives some conclusions.

2. THE BOLTZMANN EQUATION

We begin with the linear time-dependent BTE in a three-dimensional box geometry with general scattering [22].
The spatial domain is the box D � fr = (x; y; z)jax � x � bx; ay � y � by; and az � z � bzg, the direction
variable is 
 2 S2, the unit sphere in R3, the energy variable is E 2 (0;1), the time variable is t, and the equation
in the flux  (r;
; E; t) is given by

1
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(r;
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0 �
; E0 ! E)d
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 (r;
; E; t0) =  0(r;
; E);

where r � (@ =@x; @ =@y; @ =@z), v(E) is the particle speed, and  0 is the initial state at time t = t0. The
functions � and �s are material cross sections, with the � term representing a loss of particles due to absorption or
scattering events resulting in a different energy E 0 or direction 
0 for the outgoing particle, while the term involving
�s represents a source of particles due to scattering from other directions and energies into the energyE and direction

. The function q(r;
; E; t) represents an external source of particles.

Boundary conditions must also be specified to make (1) well-posed. For simplicity, we consider only Dirichlet
boundary conditions in which the incident flux is specified on a face. Specifically, we consider boundary conditions
of the form

 (r;
; E; t) =  B(r;
; E; t) for all t � t0, r 2 @D and 
 2 S2 with ~n(r) �
 < 0; (2)

where ~n(r) is the outward pointing unit normal at r 2 @D. Other options include a reflecting condition on a face, or
so-called white boundary conditions that couple all the incident and outgoing fluxes on a face.

A semi-discretization of (1) can be obtained using a multigroup discretization of the energy E (see, e.g., [18]). In
the multigroup approach, the energyE is restricted to a finite interval partitioned into subintervals, or “groups”:

Emax = E0 > E1 > � � � > EG = Emin: (3)
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The equation (1) is then averaged over each groupE g < E < Eg�1 and the cross sections � and �s are approximated
by certain “flux-weighted averages” to maintain linearity. This yields the following semi-discretization of (1):

1
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@ g
@t

(r;
; t) + 
 � r g(r;
; t) + �g(r) g(r;
; t) = (4)

G�1X
g0=0

Z
S2

�s;g;g0(r;
0 �
) g0(r;
0; t)d
0 + qg(r;
; t);

for g = 0; � � � ; G� 1, where

 g(r;
; t) �

Z Eg

Eg+1

 (r;
; E; t)dE and qg(r;
; t) �

Z Eg

Eg+1

q(r;
; E; t)dE:

Alternatively, one can derive similar equations by using a piecewise constant finite element discretization in energy.
When solving (4), for each g the flux  g(r;
; t) is expanded in surface harmonics according to

 g(r;
; t) =

1X
n=0

nX
m=�n

�mg;n(r; t)Y
m
n (
);

where Y m
n (
) is a surface harmonic and

�mg;n(r) �

Z
S2

 g(r;
)Y
m
n (
)d


is the (n;m)th moment of  g .
Given  g above, one is able to rewrite the scattering integral in the form

Z
S2

�s;g;g0 (r;
0 � 
) g0(r;
0)d
0 =

1X
n=0

�s;g;g0;n(r)

nX
m=�n

�mg0;n(r)Y
m
n (
); (5)

where the �s;g;g0;n are given by

�s;g;g0;n(r) � 2�

Z 1

�1

�s;g;g0 (r; �0)Pn(�0)d�0;

and where �0 is the cosine of the scattering angle. The infinite series in (5) is truncated to a finite number of terms,
with a maximum value, Ns, for n. The group total cross section is defined as

�g(r) � �a;g(r) +
G�1X
g0=0

�s;g;g0;0(r) , with �a;g �
Z Eg

Eg+1

�a(r; E)dE; (6)

for the absorption cross section �a(r; E). Thus, we can write the multigroup equations as

1

vg

@ g
@t

(r;
; t) + 
 � r g(r;
; t) + �g(r) g(r;
; t) = (7)

G�1X
g0=0

NsX
n=0

�s;g0;g;n(r)
nX

m=�n

�mg0 ;n(r)Y
m
n (
) + qg(r;
; t);



4 BROWN, GRANT, AND WOODWARD

for g = 0; � � � ; G� 1.

3. UNCERTAINTY QUANTIFICATION

In this section we describe how sensitivities can be used to estimate uncertainties in the context of solving the
neutron transport equation (1). To simplify the presentation, we restrict here to the steady state mono-energetic case
(i.e., one energy group) and assume that the cross sections are constant in space along with isotropic scattering. Hence,
we have

� = �a + �s;

with the scalars �a and �s representing the absorption and isotropic scattering cross sections, and (1) reduces to

(
 � r+ �) (r;
) = �s

Z
S2

 (r;
0)d
0 + q(r;
); (8)

 (r;
) =  B(r;
) for all r 2 @D and 
 2 S2 with ~n(r) �
 < 0:

For many problems, a typical output quantity of interest is a detector count of the generic form

d( ; �a) �

Z
S2

Z
D

�a (r;
)drd
; (9)

for some spatial region D. We refer to the function d( ; �a) as a detector response function. A related quantity that
can also be of interest is what we call the integrated particle flux over the detector region, namely

~ �

Z
S2

Z
D

 (r;
)drd
: (10)

In real problems, the cross sections come from experimental data and so have some uncertainty associated with them.
The main question we want to try and answer is the following: What is the uncertainty in the integrated particle flux
and detector response function caused by the uncertainties in the cross sections?

We compare two approaches to answering this question: a direct calculation of the uncertainty using a full Monte
Carlo sampling approach, and an estimate of the uncertainty obtained using sensitivity analysis.

3.1. The Full Monte Carlo Sampling Approach

We begin by assuming the (�a; �s) values come from a population with a given probability distribution having
means �̂a and �̂s, and covariance matrix C(�a; �s). Let

(�a;1; �s;1); : : : ; (�a;n; �s;n)

be a random sample of size n from this population. We then solve equation (8) for each pair, and let  i denote the
solution corresponding to (�a;i; �s;i). Let di = d( i; �a;i) denote the corresponding detector response. Then

�d �
1

n

nX
i=1

di and s2d �
1

n� 1

nX
i=1

(di � �d)2 (11)

are sample estimates of the true mean detector response and its variance, which we will assume represents the uncer-
tainty in the detector response function. The problem with the full Monte Carlo sampling approach is that the sample
size n needed to ensure that �d and s2d are good estimates is typically prohibitively large, given that we must solve (8)
n times. We next describe how to use sensitivity analysis as a way to estimate these quantities at a reduced cost.
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3.2. The Sensitivity Analysis Approach

In this approach, we again assume that we have a random sample of size n from the (� a; �s) population. However,
instead of solving (8) n times, first let

��a �
1

n

nX
i=1

�a;i and ��s �
1

n

nX
i=1

�s;i (12)

be the corresponding sample means. We then solve (8) using � a = ��a and �s = ��s, denoting the solution by (��a; ��s)
and letting ~d = d( (��a; ��s); ��a).

In the sensitivity analysis approach, we use a first order Taylor series for  (�a; �s) to approximate the dependence
of  on the parameters �a and �s. That is, we use

 (�a; �s) �  (��a; ��s) +
@ 

@�a
(��a; ��s) � (�a � ��a) +

@ 

@�s
(��a; ��s) � (�s � ��s): (13)

The derivatives @ =@�a and @ =@�s are called the sensitivities of  with respect to �a and �s. Equations for these
derivatives can be obtained by differentiating (8) with respect to � a and �s separately, giving (recalling that � =

�a + �s)

(
 � r+ �)
@ 

@�a
= �s

Z
S2

@ 

@�a
(r;
0)d
0 �  (r;
); (14)

@ 

@�a
(r;
; ) = 0 for all r 2 @D and 
 2 S2 with ~n(r) �
 < 0;

and

(
 � r+ �)
@ 

@�s
= �s

Z
S2

@ 

@�s
(r;
0)d
0 +

Z
S2
 (r;
0)d
0 �  (r;
); (15)

@ 

@�s
(r;
; ) = 0 for all r 2 @D and 
 2 S2 with ~n(r) � 
 < 0:

We then solve these equations using �a = ��a, �s = ��s, and  =  (��a; ��s).
Next, we want to use the above Taylor series approximation to obtain an estimate for the variance s 2d in (11).

However, we don’t have �d in (11), only the estimate ~d = d( (��a; ��s); ��a). From the definition of d( ; �a), we can
write

d( (�a; �s); �a) � ~d+
@d

@�a
(��a; ��s) � (�a � ��a) +

@d

@�s
(��a; ��s) � (�s � ��s);

where

@d

@�a
(�a; �s) � �a

Z
S2

Z
D

@ 

@�a
drd
 +

Z
S2

Z
D

 drd
 , and (16)

@d

@�s
(�a; �s) � �a

Z
S2

Z
D

@ 

@�s
drd
:

Using ~d as an estimate of �d, we have

�d� ~d =
1

n

nX
i=1

[d( (�a;i; �s;i); �a;i)� d( (��a; ��s); ��a)]

�
1

n

nX
i=1

�
@d

@�a
(��a; ��s) � (�a;i � ��a) +

@d

@�s
(��a; ��s) � (�s;i � ��s)

�

= 0:
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Thus, we will use �d = ~d, since this is true to first order. Next, we define the vectors

��a �

0
B@
�a;1 � ��a

...
�a;n � ��a

1
CA ; ��s �

0
B@
�s;1 � ��s

...
�s;n � ��s

1
CA and �d �

0
B@
d1 � �d

...
dn � �d

1
CA :

Then we have

�d �

0
B@

@d
@�a

(��a; ��s) � (�a;1 � ��a) +
@d
@�s

(��a; ��s) � (�s;1 � ��s)
...

@d
@�a

(��a; ��s) � (�a;n � ��a) +
@d
@�s

(��a; ��s) � (�s;n � ��s)

1
CA = [��a;��s] �

0
@

@d
@�a

(��a; ��s)

@d
@�s

(��a; ��s)

1
A :

Using these relationships, we can write

s2d =
1

n� 1
�dT�d �

1

n� 1

�
@d

@�a
(��a; ��s);

@d

@�s
(��a; ��s)

��
��Ta
��Ts

�
[��a;��s]

0
@

@d
@�a

(��a; ��s)

@d
@�s

(��a; ��s)

1
A ;

or

s2d � ŝ2d � cTV c; (17)

where

c �

0
@

@d
@�a

(��a; ��s)

@d
@�s

(��a; ��s)

1
A and V �

1

n� 1

�
��Ta��a ��Ta��s
��Ts ��a ��Ts ��s

�
:

The matrix V is an approximation to the covariance matrix C(�a; �s) defined earlier. The derivatives in the vector
c are evaluated using (16) and the calculated sensitivities found by solving equations (14) and (15) for � a = ��a and
�s = ��s. These ideas can also be applied in a similar way to estimate uncertainties in the integrated particle flux (10).

Of course, the error e = s2d � ŝ2d depends upon how well the linear Taylor series approximations used above
describe the true nonlinear behavior of the uncertainties. In the numerical studies performed in a later section, we
will attempt to explore the limits of acceptability for the linear sensitivity analysis approach. One could also extend
this linear approach to a higher order method in the natural way. For example, a quadratic approach would require
three additional solves for the extra sensitivities and would generally be more accurate, but it would most likely still
be much less expensive than the full Monte Carlo sampling approach.

3.3. Extensions

We briefly describe extensions of our simplified example to problems involving multiple energy groups and materi-
als, higher order scattering, and time dependence. For multiple energy groups, the scalars � a and �s are replaced by
matrices of size G�G. For example, the total cross section � is replaced by the matrix

� = �a + �̂s;0; (18)

where

�a � diag(�a;0; : : : ; �a;G�1) and �̂s;0 � diag

0
@G�1X
g0=0

�s;1;g0;0; : : : ;

G�1X
g0=0

�s;G;g0;0

1
A :
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Next, the scattering cross section �s is replaced by moment matrices �s;n defined by

�s;n �

0
B@

�s;0;0;n � � � �s;0;G�1;n
...

. . .
...

�s;G�1;0;n � � � �s;G�1;G�1;n

1
CA (19)

for n = 0; 1; : : : ; Ns. Furthermore, for each material in the problem, there is a set of matrices as in (18) and (19). In a
typical problem, one may want to calculate the uncertainty associated with all of the parameters in these matrices for
all materials, or perhaps just a subset. Our methods for estimating uncertainty work well on these harder problems.
In the numerical results section, we give an example problem using three energy groups to illustrate this fact. Finally,
adding time dependence means solving the original time-dependent problem along with similar equations for all of
the now time-dependent sensitivities.

4. DISCRETIZATION OF THE 3-D PROBLEM

We give a brief overview of our discretization approach in space and direction, as this has been extensively described
in our earlier work ([1] and [4]). We begin with a short subsection on notation, and then proceed to the discrete form
of the Boltzmann equation.

4.1. Notation

For matrices A 2 Rm�n and B 2 Rk�l, the Kronecker (or tensor) product of A and B is the mk � nl matrix
denoted by

A
B �

0
B@

a11B � � � a1nB
...

. . .
...

am1B � � � amnB

1
CA ;

where A = (aij). Kronecker products have many interesting properties. We list here the ones relevant to our discus-
sion:

� If A and B are nonsingular, then A
B is nonsingular with (A
B)�1 = A�1 
B�1,

� (A
B)T = AT 
BT ,

� Given matrices A, B, C, and D, (A 
 B) � (C 
D) = AC 
 BD, as long as both sides of the equation make
sense,

� (A+B)
 C = A
 C +B 
 C, and

� A
 (B + C) = A
B +A
 C.

4.2. Quadrature Rules

The specific quadrature rules we consider for approximating integrals on S 2 employ the standard symmetry as-
sumptions. Following Carlson and Lathrop [6], we consider quadrature rules of the form

Z
S2

 (
)d
 �

LX
`=1

w` (
`); (20)

where 
` � (�`; �`; �`), for all ` = 1; : : : ; L, with L = �(� + 2) and � is the number of direction cosines (� =

2; 4; 6; : : :). See [4] for more details.
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4.3. The Petrov-Galerkin Spatial Discretization

We next consider the spatial discretization of the system (7). For each group g and each direction 
 `, we use a
Petrov-Galerkin finite-element method for the solution of the problem

�
1
v
@
@t
 +
 � r + � = f in D;

 (r) =  B(r) for all r 2 @D with ~n(r) �
 < 0;
(21)

where 
 = (�; �; �) 2 S2 is fixed and equal to one of the above quadrature points, � = � g , and v = vg (although we
suppress the ` and g subscripts to simplify notation), D is the spatial domain defined earlier, and ~n(r) is the outward
pointing unit normal at r 2 @D. The functions f , g, and � are assumed known.

We first discretize D into zones in the natural way, and define

�xi = xi � xi�1 for i = 1; : : : ;M; �yj = yj � yj�1 for j = 1; : : : ; J , and

�zk = zk � zk�1 for k = 1; : : : ;K;

and define rijk = (xi; yj ; zk). Also define �rijk � �xi�yj�zk. The frijkg are referred to as nodes, and function
values at these points are called nodal values. Assume that � and f have constant values on each zone

Zijk � frjxi�1 < x < xi; yj�1 < y < yj ; zk�1 < z < zkg;

denoted by �ijk and fijk, respectively. Function values that are constant on zones will be referred to as zone-centered
values. We use  ijk to denote the approximation to  (rijk), the true solution at rijk , and use piecewise continuous
trilinear elements to approximate  . We then test against piecewise constant functions in space. Following the de-
velopment given in [4], there are (M + 1)(J + 1)(K + 1) unknowns  ijk . There are MJK zonal equations, and
MK + JM + JK +M + J +K + 1 boundary equations.

Writing the discretized system in matrix notation, we first have the discrete flux vector

	 2 R(M+1)(J+1)(K+1);

defined for all nodes ordered in the natural way. Next, define diagonal matrices �x � diag(�x 1; : : : ;�xM ), with
�y and �z similarly, and define the matrices DM 2 RM�(M+1) and SM 2 RM�(M+1) by

DM �

0
B@
�1 1

. . .
. . .

�1 1

1
CA and SM �

1

2

0
B@

1 1
. . .

. . .

1 1

1
CA : (22)

In a similar way, define the matrices DJ , SJ , DK , and SK . Let � � diag(�111; : : : ; �MJK) 2 RMJK , and define
the matrices Cx, Cy, Cz, and S by

Cx � SK 
 SJ 
�x�1DM ; Cy � SK 
�y�1DJ 
 SM ;

Cz � �z�1DK 
 SJ 
 SM ; and S � SK 
 SJ 
 SM :

The matrices Cx, Cy, and Cz represent the discretized versions of the differentiation operators @=@x, @=@y, @=@z,
respectively, and S represents an averaging matrix taking nodal vectors into zone-centered vectors. With these defini-
tions, it is possible to write the MJK zone-centered equations in the unknown 	 as

S _	 + (C +�S)	 = F; (23)
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where C � �Cx + �Cy + �Cz , and F � (fijk) 2 R
MJK and _	 denotes the time derivative of 	.

To isolate the boundary values, first note that for a direction vector 
 with all its components positive,  satisfies
a Dirichlet condition for all r = r0jk , ri0k , or rij0, i.e., for an r on any one of the three faces x = x0, y = y0, or
z = z0. For any such 
, letting 	B be a vector of the same dimension as 	 whose possibly nonzero entries are values
of  B(r;
) at all the boundary points, the discrete boundary conditions can be written as E 000(	�	B) = 0, where

E000 �

0
@ eT0K 
 IJ+1 
 IM+1

(0; IK)
 eT0J 
 IM+1

(0; IK)
 (0; IJ )
 eT0M

1
A ;

with the vectors e0J and e0K having the natural interpretations. There are different E matrices for the other possible
quadrature points. In all, there are eight different E ijk matrices, with i = 0 or M , j = 0 or J , and k = 0 or K.

At this point it is necessary to introduce the dependence of 	, 	B , and the matrix C on the quadrature point 
 and
group index g. For a given 
 = 
` and g, the vector 	 is really 	g;`, 	B = 	B;g;`, and the matrix C = C`, for the
subscript ` corresponding to that 
. Then the matrix representation of the discrete version of (21) can be written as

�
S

0

�
_	g;` +Hg;`	g;` =

�
Fg;`

B`	B;g;`

�
, where Hg;` �

�
C` +�gS

B`

�
; (24)

with B` = Eijk for the appropriate choice of i; j; k, and C` = �`Cx+ �`Cy+ �`Cz . Note that Hg;` operates on nodal
vectors.

4.4. The Discrete Ordinates Method

Continuing the matrix development of the overall discretization of the BTE, we begin by defining discretized rep-
resentations of the operations of taking moments of the flux. As operators on zone-centered vectors, these are easily
seen to be given by the MJK � LMJK matrices

Ln;m �
�
w1Y

m
n (
1)I w2Y

m
n (
2)I � � � wLY

m
n (
L)I

�
: (25)

Similarly, we define the LMJK �MJK matrices

L+n;m �

0
B@
Y m
n (
1)I

...
Y m
n (
L)I

1
CA ; (26)

where I = IMJK . We also will find it useful to define the grouped matrices Ln and L+
n , where

Ln =

0
B@
Ln;�n

...
Ln;n

1
CA and L+

n =
�
L+n;�n; � � � ; L

+
n;n

�
;

and also the further grouped matrices

LN =

0
B@

L0
...
LN

1
CA and LN;+ =

�
L+0 ; � � � ; L

+
N

�
:

To represent the source term, define the zone-centered vector Q � (q ijk`) 2 R
LMJK , where qijk` � q(rijk ;
`). For

the boundary terms, define the block diagonal matrices B and C by

B � diag(B1; : : : ; BL) and C � diag(C1; : : : ; CL);
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and let

�s;g;g0;n � I2n+1 
 �̂s;g;g0;n; where (27)

�̂s;g;g0;n � diag(�s;g;g0 ;n;111; : : : ; �s;g;g0;n;MJK); n = 0; 1; : : : ;

�Z � IL 
 Z, where Z �

�
IMJK

0

�
2 R(M+1)(J+1)(K+1)�MJK

�ZB � IL 
 ZB , where

Zb �

�
0

I(M+1)(J+1)(K+1)�MJK

�
2 R(M+1)(J+1)(K+1)�(M+1)(J+1)(K+1)�MJK

�� � IL 
�, and
�S � IL 
 S:

The matrix �Z injects zone-centered vectors into the nodal vector space, and the matrix �S averages nodal vectors to
obtain zone-centered ones. Note that �ZT �Z = I and �ZT �ZB = 0. Using the above matrices, define the matrix Hg by

Hg � diag(Hg;1; : : : ; Hg;L) = �Z(C + ��g
�S) + �ZBB: (28)

The matrices �Z and �ZB are needed since Hg operates on nodal vectors, while the scattering matrix operates on zone-
centered vectors. (Recall that f was assumed to be zone-centered in the development of the Petrov-Galerkin method
discussed earlier.) If we assume only Ns + 1 terms in the scattering operator, then the complete discretization of
(1)–(2) (modulo the time t) can be written in the compact form

1

vg
�Z �S _	g +Hg	g = �Z

G�1X
g0=0

NsX
n=0

L+n�s;g;g0;nLn �S	g0 + Fg ; (29)

	g(t0) = 	0
g; g = 0; � � � ; G� 1;

with Fg � �ZQg + �ZBB	B;g and the _	g denoting the time derivative of 	g.
Next, if we define

	 �

0
BBB@

	0

	1

...
	G�1

1
CCCA ; F �

0
BBB@

F0
F1
...

FG�1

1
CCCA ; �s �

0
B@

�Ns

s;0;0 � � � �Ns

s;0;G�1
...

. . .
...

�Ns

s;G�1;0 � � � �Ns

s;G�1;G�1

1
CA ;

where �Ns

s;gg0 � diag (�s;g;g0;0; � � � ;�s;g;g0;Ns
), and define S � IG 
 �S, Z � IG 
 �Z, H � diag(H1; H2; � � � ; HG),

L+ � IG 
 LNs;+, L � IG 
 LNs , and V � diag(v0; � � � ; vG�1)
 IMJKL, then (29) can be written as

V�1ZS _	+H	 = ZL+�sLS	+ F; (30)

	(t0) =	0:

Since the boundary equations do not involve derivatives of the unknown 	, this system is properly referred to as a
differential-algebraic system of equations (DAEs), and in the next section we describe our solution procedure.

5. IMPLEMENTATION

In this section, we discuss some of the particular methods employed in our implementations of the two uncertainty
techniques. For either case, we formulate the BTE discrete system as a differential-algebraic equation (DAE). After
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describing this approach, we show how the solution method is easily extended to compute sensitivities. Lastly, we will
detail our sampling approach for the cross section parameters.

5.1. DAE Solution Procedure

We write the DAE system (30) in the form

F (t;	; _	) = 0; (31)

where

F (t;	; _	) � V�1ZS _	+H	� ZL+�sLS	� F:

The time integration of the DAE system (30) is accomplished via the IDA (Implicit Differential/Algebraic Equation)
solver developed by Hindmarsh and Taylor ([11]). This software package is a parallel code written in the C language
for the solution of general initial value DAE systems. IDA uses Backward Differential Formula (BDF) methods to
perform the time integration. The BDF methods are variable in order and step size and are also implicit. This method
results in a linear system of the form

F (t;	; �	 +�) = 0

that must be solved at each time step. Here, � = �0=�tn is a constant that changes whenever the step size or order
changes, � is a vector that depends on the solution 	 at past times, and t;	, and � are evaluated at t n. From the
definition of F , it follows that the above linear system has the form

(H+ �V�1ZS� ZL+�sLS)	 = F�V�1ZS�: (32)

As an example, using the BDF method of order 1 (i.e., Backward Euler) for the time integration, the linear system to
solve is

(H+ (�tnV)�1ZS� ZL+�sLS)	
n = Fn + (�tnV)�1ZS	n�1: (33)

Within IDA, system (32) is solved via a preconditioned GMRES iteration. We employ three types of preconditioners
to use in the solution of (32). The first is based on the so-called “sweeping procedure” typically used to invert the
discrete 
 � r + � operator represented here by the matrix H, the second combines this with a Diffusion Synthetic
Acceleration (DSA) approach, while the third uses a block Gauss-Seidel approach in energy. As the focus in this paper
is on the calculation of solution sensitivities, the specific details of these preconditioners are not discussed here. We
refer the interested reader to [5].

5.2. Computation of Sensitivities

Using similar notation as above, we can write time-dependent versions of (14) and (15) as a system of equations for
the scaled sensitivities Sa = ~�a

@	
@�a

and Ss = ~�s
@	
@�s

, where ~�a and ~�s are nominal values of the cross sections. We
then discretize as above to give linear equations for the sensitivities

@F

@	
Si +

@F

@ _	
_Si +

@F

@�i
= 0; (34)

where i can be either a or s for absorbing or scattering cross sections, respectively. We calculate the solution to these
equations with the sensitivity version of IDA [17]. This software augments the DAE system given in (31) with the
linear systems (34) so that a single DAE system is solved giving the BTE solution as well as the sensitivities of that
solution to each of the opacities.
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Letting

Y(t) �

0
@ 	(t)

Sa(t)

Ss(t)

1
A ; M(t;Y; _Y; �a; �s) �

0
B@

F
@F
@	Sa +

@F

@ _	
_Sa +

@F
@�a

@F
@	Ss +

@F

@ _	
_Ss +

@F
@�s

1
CA ;

we have the new DAE system,

M(t;Y; _Y; �a; �s) = 0:

The derivatives of F are approximated by finite-difference techniques,

@F

@	
Sa �

F (t;	+ Æ	Sa; _	; �a; �s)� F (t;	� Æ	Sa; _	; �a; �s)

2Æ	
;

and similarly for the derivatives of F with respect to _	 and the Si. One could also use automatic differentiation
techniques, and future releases of SensIDA will provide basic interfaces to the automatic differentiation software,
ADIC [3].

The sensitivity version of IDA chooses time steps for the BDF methods so that accuracy is insured for both BTE
solutions as well as the sensitivities. As in IDA, implicit problems are solved at each time step using GMRES and
making use of the preconditioners that are used for the state variables.

In the steady state case, we employ the Krylov Inexact Newton SOLver, KINSOL, and its sensitivity variant [23, 9]
to solve for the BTE system solution and its sensitivities.

5.3. Latin Hypercube Sampling

We now develop details of our implementation of Monte Carlo uncertainty quantification. In order to accurately
and simultaneously sample the probability distributions of multiple model parameters, we motivate our handling of
random number generation, sampling method, and covariance management. Simultaneous random sampling of the
probability distribution of model parameters is conceptually simple and provides a mechanism for estimating the fully
nonlinear dependencies of model output on parameter uncertainty. Efficient and accurate implementation is, however,
more demanding.

In creating our random sampling sets below, we have used the Park and Miller [21] random number generator
embedded within the Bays and Durham [2] shuffle algorithm. Park and Miller have defined a “minimal standard”
linear congruential algorithm having a long period before repetition occurs, with minimal serial correlations, and
implementable on any machine having integer arithmetic of 32 or more bits. Bays and Durham have provided a
shuffling algorithm for removing residual serial correlations from generated numbers. Our implementation of the Park
and Miller algorithm was verified by comparison with the published 10,000th number generated from a seed of one.
The final routine was checked for randomness via scatter plots, lag correlation analysis, and spectral analysis.

For a given number of Monte Carlo runs, N , the simple random expectation for the standard deviation of the mean,
�s is �s = s=

p
(N), where s is the sample variance of the output result. The efficiency of a Monte Carlo sampling

method can be defined as the ratio �s=ŝ for the sameN runs, where ŝ is the observed variance in the mean result. Under
this definition, simple random sampling has been found to be much less efficient than more systematic sampling
methods [10, 7, 8]. Latin Hypercube Sampling (LHS) is a particularly effective and widely used variance reducing
scheme [19, 14, 13]. Moreover, LHS accomplishes this variance reduction without biasing the expected means or
distributions.

To create a Latin Hypercube Sample set, the cumulative probability distribution (0 < p < 1) for each of K param-
eters was divided into N equal probability strata. For the one-group studies reported here, values of 50 and 2 were
used for N and K, respectively. For the three-group problem, N and K were 50 and 9, respectively. K random
permutations of the integers from 1 to N were formed, creating an N by K combination matrix ~B. Each of the N
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rows of this matrix constitutes a sampling vector that randomly selects a single stratum interval from the probability
distribution of each of the K parameters to be varied.

This combination process and choice of N ensures that each parameter is sampled, over �2 standard deviations
with each of the N probability intervals for a given parameter being used exactly once. Because of these features, for
relatively small sampling sets (e.g., 50 to 100 samples), LHS yields much more representative approximate distribu-
tions than would have been expected with simple random sampling. This property results in reduced variance among
the model result means and distributions obtained using successive sampling sets. It has been found that using LHS
can reduce the number of runs required to obtain a given variance by a factor of 10 compared with simple random
sampling [8].

Two issues related to correlations between the K parameters arise in the sampling process described above. The
first is that the sampling process may create inadvertent and unwanted correlations between parameters. The second is
that there may be actual correlations between parameters that should be taken into account. Both of these issues can be
handled within the context of LHS sampling [12, 13], however, in the cases below we have assumed the independence
of different cross sections and used the methodology of this section only to minimize the rank correlation between
parameters.

The first step in managing correlations between parameters is to transform the combination matrix ~B, created as
described above, element by element into a corresponding score matrix ~R which can be numerically manipulated.
Iman and Connover [12] suggested use of the van der Waerden scores

r = G�1
�

i

N + 1

�
; i = 1 : : :N

as the transformation between ~B and ~R, where G�1 is the inverse cumulative normal distribution. It is then assumed
that, following sampling, the N �K score matrix ~R has a K �K correlation matrix ~Cs. As described above, ~Cs
may differ from the identity matrix because of non-negligible correlations unintentionally introduced by the sampling
process. Because correlation matrices are symmetric positive definite, the Cholesky decomposition of ~Cs can be
found:

~Cs = QQT :

Similarly, if there is a target correlation between parameters to be imposed, the target correlation matrix C t can be
Cholesky decomposed:

Ct = PP T :

A transformation S can then be defined such that

SQQTST = PP T ;

which, by inspection, has the solution

S = PQ�1:

The matrix R = ~RST will have the desired target correlation. A new sample combination matrix B having the same
rank correlation as R is then obtained as the rank ordering of R.

To complete the generation of a sample set, a random probability is uniformly chosen within each interval selected.
Thus,

p = pi(1� u) + pi+1u;

where pi and pi+1 are the probabilities at the lower and upper limits of a cumulative probability interval and u is
a uniform random number such that 0 < u < 1. Finally, the K separate probabilities of a sample set are converted
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into coordinates using an inverse cumulative normal transformation [13], giving parameter permutations in units of
standard deviations to be applied to the parameter means.

6. NUMERICAL TESTS

In this section we demonstrate the effectiveness of using the sensitivity analysis approach to calculating uncertainties
on several representative test problems. The three mono-energetic test problems represent three of the typical problem
regimes for transport: a highly diffusive regime involving many collisions with little absorption; a thin regime in which
the medium is almost transparent to the neutrons; and a highly absorbing regime. In a problem involving a range of
energies, the most energetic neutrons may essentially stream through the material medium, while the least energetic
undergo many collisions before being absorbed.

6.1. Simple Mono-Energetic Test Problem Results

Our first set of test problems are mono-energetic steady-state problems in three parameter regimes of interest: thick
and diffusive (i.e., many scattering collisions with little absorption), thin (few collisions), and thick with absorption
(many collisions with significant absorption). The problem domain is a cube of length 20cm on a side for all three
problems, with an internal source region that is also a cube of length 10cm centered in the larger cube. The source is
identically constant within this smaller region and zero outside. Vacuum Dirichlet boundary conditions are assumed
on all faces of the cube.

6.1.1. Di�usive Problem

For the diffusive problem, the cross sections used throughout the problem are � a = 0:01cm�1 and �s = �s;0 =

9:99cm�1. The source strength is 0:1n � cm�2 � s�1. This problem appropriately requires DSA/sweeping-based
preconditioning. The spatial mesh is uniform of size M = J = K = 20 and an S 2 quadrature rule is used (i.e., eight
directions). Figures 1, 2, and 3 show sample plots of the solution and the scaled sensitivities. Note the inverted color
map that appears in Figure 2. This results because an increase in the absorption cross section will decrease the overall
flux, and hence this sensitivity will have negative values.

6.1.2. Thin Problem

For the thin problem, the cross sections used throughout the problem are � a = 0:00005cm�1 and �s = �s;0 =

0:00005cm�1. The source strength is again 0:1n � cm�2 � s�1. This problem only requires sweeping-based precondi-
tioning. The spatial mesh is uniform of size M = J = K = 20 and an S6 quadrature rule is used (i.e., 48 directions).
Figures for this problem and the next are similar to those for the diffusive problem and so are omitted.

6.1.3. Thick Problem

For the thick problem, the cross sections used are �a = 0:05cm�1 and �s = �s;0 = 0:05cm�1. The source strength
is again 0:1n � cm�2 � s�1. This problem also only requires sweeping-based preconditioning. The spatial mesh is
uniform of size M = J = K = 20 and an S6 quadrature rule is used (i.e., 48 directions).

6.2. Analysis of One-Group Problems
6.2.1. General Concepts

We now compare the variances of results obtained with the nonlinear model via Monte Carlo Latin Hypercube
Sampling (MC) with those obtained from the linear (i.e., first-order) sensitivity (LS) expansions calculated via (13),
(10), and (17). In performing this analysis, it has been assumed that the absorption and scattering cross sections
are independent. Although the correlation management technique of Section 5.3 is general, we have used it only
to minimize inadvertent rank correlations between cross sections under the assumption that all cross sections are
independent.

For model parameters sampled from Gaussian distributions, the diagnostic distributions from the LS method are
necessarily Gaussian via the linearity of (13) — the sum of individual Gaussian distributions being Gaussian [15]. In
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contrast, the distributions from the MC method are not necessarily Gaussian, although, in some cases, a transformation
may make them nearly so [14, 15]. As the discussion below for the diffusion test problem elucidates, the range of
applicability of first-order sensitivities may be substantially extended by careful consideration of the physics of their
application.

In considering the physics of the BTE, increasing �a should increase absorption, correspondingly decreasing the
integrated flux, ~ , defined by (10). The global detector response of (9), however, also depends linearly on � a. Thus,
the detector count defined by (9) must display the significantly nonlinear asymptotic behavior of going to zero both
for very small and for large �a. Therefore, ~ , because of its monotonic dependence on �a, should better match the
linear expansion of (13). Based on this observation, the analyses (below) of the steady-state tests were done in terms
of ~ rather than d.

6.2.2. Thin Test Problem

For the thin test problem, 100 MC runs were done for each of two uncertainty assumptions: one in which � a and
�s were sampled from Gaussian distributions for 10% standard deviations relative to the respective nominal values
and one in which the error was assumed to be 30%. In Table 1 we give the standard deviation for parameter sampling,
number of runs, nominal value for ~ , mean values and standard deviations of ~ for Monte Carlo LHS sampling (MC)
and linear sensitivity (LS) respectively, and percentage difference of the LS standard deviation relative to that from
MC. The scatter-plot in Figure 4a shows the correlation in ~ calculated from LS with respect to that from MC for an
assumed cross section error of 30%. The variation of the difference between the two estimates as a function of � a is
shown in Figure 4b, with the additional variation in �s shown by the dot color.

It is clear from Table 1 that in both the 10% and 30% error cases the linear sensitivities provide accurate estimates
of output uncertainty for the thin test problem. The differences between the LS and MC cases, shown in Figure 4b,
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TABLE 1
Comparison of means and standard deviations for the one-group thin test problem. ~ MC were evaluated via full
Monte Carlo runs. ~ LS were evaluated via use of (13) and (10). The last column gives the percentage difference
in the standard deviations estimated via the LS method relative to the standard deviation from the MC method.

Sample Number Nominal Mean Mean Std Dev Std Dev Percent %�
Std Dev Samples ~ ~ MC

~ LS ~ MC
~ LS in Std Dev

10% 100 4.0712e+3 4.0712e+3 4.0712e+3 1.4188e-1 1.4186e-1 -0.0138
30% 100 4.0712e+3 4.0712e+3 4.0712e+3 4.2577e-1 4.2557e-1 -0.0463
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FIG. 4. Run-by-run correlation and differences between ~ MC and ~ LS for the thin test problem with an assumed cross section error of 30%.
In (a), the dot color shows �a. In (b), the differences are ploted relative to �a and the dot color shows �s .

appear to be randomly distributed, consistent with the interpretation of these differences as consisting of numerical
noise.

6.2.3. Thick Test Problem

For the thick test problem, 150 LHS runs were done for each of two uncertainty assumptions: one in which � a and
�s were sampled from Gaussian distributions for 10% standard deviations relative to the respective nominal values,
and one in which the error was assumed to be 30%. In Table 2 we give the sampling standard deviation, number of
runs, nominal value for ~ , mean values and standard deviations of ~ for Monte Carlo LHS sampling (MC) and linear
sensitivity (LS) respectively, and percentage difference of the LS standard deviation relative to that from MC. The
scatter-plot in Figure 5a shows the correlation in ~ calculated from LS with respect to that from MC for an assumed
cross section error of 30%. The variation of the difference between the two estimates as a function of � a is shown in
Figure 5b, with the additional variation in �s shown by the dot color.

It is clear from Table 2 that in both the 10% and 30% error cases that linear sensitivities provide accurate estimates
of output uncertainty for the thick test problem. For the scenario of 30% assumed error, the correlation between the
results for LS and MC are displayed in Figure 5a. In contrast to results for the thin problem, Figure 5a shows visible
deviation of the LS from the MC cases for large deviations of �a. The differences between the LS and MC cases,
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TABLE 2
Comparison of means and standard deviations for the one-group thick test problem. ~ MC were evaluated via
full Monte Carlo runs. ~ LS were evaluated via use of (13) and (10). The last column gives the percentage
difference in the standard deviations estimated via the LS method relative to the standard deviation from the
MC method.

Sample Number Nominal Mean Mean Std Dev Std Dev Percent %�
Std Dev Samples ~ ~ MC

~ LS ~ MC
~ LS in Std Dev

10% 150 3.3800e+3 3.3820e+3 3.3796e+3 1.0982e+2 1.0937e+2 -0.404
30% 150 3.3800e+3 3.4013e+3 3.3787e+3 3.3730e+2 3.2811e+2 -2.724
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FIG. 5. Run-by-run correlation and differences between ~ MC and ~ LS for the thick test problem with an assumed cross section error of
30%. In (a), the dot color shows �a. In (b), the differences are ploted relative to �a and the dot color shows �s .

shown in Figure 5b, now show a definite dependence on � a. Despite this dependence, the estimates of the standard
deviation about the nominal value for the MC and LS treatments remain within 3% of each other.

6.2.4. Di�usive Test Problem

For the diffusive test problem 200 LHS runs were done, in which � a and �s were sampled from Gaussian dis-
tributions for 10%, 20%, and 30% standard deviations relative to their respective nominal values. Table 3 gives the
statistics accumulated for these runs. For the 20% and 30% sampling standard deviations, it is apparent that there are
substantial differences in the ~ standard deviations estimated by the LS method compared to the MC method. For the
30% case, Figure 6 confirms the nature of these deviations, the dependence of ~ on �a is clearly nonlinear. It would
be premature, however, to conclude that the LS method cannot be accurately applied to this problem.

To some approximation, it is plausible to consider that the integrated particle flux, ~ , from (10) will be proportional
to the mean free path for absorption. The mean free path for absorption in turn should be inversely proportional to
�a. This would suggest either performing the analysis in terms of ~ �1 or in resampling the parameter error in terms
of inverse cross sections and doing a new set of Monte Carlo runs. We have chosen the former as the quicker to
implement.
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TABLE 3
Comparison of means and standard deviations for the one-group diffusive test problem. ~ MC were evaluated
via full Monte Carlo runs. ~ LS were evaluated via use of (13) and (10). The last column gives the percentage
difference in the standard deviations estimated via the LS method relative to the standard deviation from the
MC method.

Sample Number Nominal Mean Mean Std Dev Std Dev Percent %�
Std Dev Samples ~ ~ MC

~ LS ~ MC
~ LS in Std Dev

10% 200 3.3435e+4 3.3637e+4 3.3435e+4 3.0330e+3 2.9289e+3 -3.43
20% 200 3.3435e+4 3.4295e+4 3.3435e+4 6.7670e+3 5.8579e+3 -13.4
30% 200 3.3435e+4 3.5667e+4 3.3435e+4 1.3227e+4 8.7868e+3 -33.6
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FIG. 7. Probability density functions for ~ and ~ �1 for the diffusive test problem with assumed cross section standard deviations of 30%.

TABLE 4
Comparison of means and standard deviations for the one-group diffusive test problem analyzed in terms of
~ �1. ~ �1

MC
were evaluated via full Monte Carlo runs. ~ �1

LS
were evaluated via use of (13) and (10). The last

column gives the percentage difference in the standard deviations estimated via the LS method relative to the
standard deviation from the MC method.

Sample Number Nominal Mean Mean Std Dev Std Dev Percent %�
Std Dev Samples ~ �1 ~ �1MC

~ �1LS
~ �1MC

~ �1LS in Std Dev

10% 200 2.9909e-5 2.9962e-5 2.9909e-05 2.6190e-6 2.6201e-6 0.0418
20% 200 2.9909e-5 3.0138e-5 2.9909e-05 5.2420e-6 5.2401e-6 -0.0358
30% 200 2.9909e-5 3.0541e-5 2.9909e-05 7.9658e-6 7.8602e-6 -1.3254

When we compare the approximate probability density function for ~ obtained from 250 runs with that for ~ �1,
the latter is much closer to being Gaussian. Both pdfs are shown in Figure 7. The form of these functions supports
our supposition that it would be more accurate to do the LS expansion in terms of ~ �1. The statistics in Table 4 and
the correlation and error plots of Figure 8 show that the error in the estimate of the standard deviations has decreased
from about 33% to about 1.3%, a result clearly demonstrating the applicability of the LS method to this problem.

6.3. Multigroup Test Problem Results

Our multigroup test problem solves a three energy group problem on a cube of length 30cm on a side. Reflecting
boundaries are assumed on three adjoining faces, while vacuum Dirichlet conditions are used on the remaining three
faces. The material used is pure aluminum at a density of 2.7g/cc. The energy group boundaries are given in Table 5.
The source region is also a cube of length 10cm on a side situated in the corner of the larger cube where the three
reflecting faces touch, and the source strength is identically constant within this smaller region and zero outside. The
source strength is 107n � cm�2 � s�1. The preconditioning used consists of a block Gauss-Seidel structure in energy
group, as there is only down-scattering for this problem, with each block inverse approximated via a DSA/sweeping-
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TABLE 5

Energy Group Boundaries for Multi-Group Test Problem (in MeV).

E0 E1 E2 E3

4.9659e0 3.6788e0 3.0119e0 1.9205e0

TABLE 6

Nominal Absorption Cross Sections for Multi-Group Test Problem (in cm�1).

Group 0 Group 1 Group 2

7.58557e-04 2.51296e-04 2.04714e-05

based preconditioner. The nominal cross sections are given in Tables 6 and 7, and isotropic scattering is assumed. The
spatial mesh is uniform of size M = J = K = 20 with S4 quadrature (i.e., 24 directions).

Both a steady-state and a time-dependent problem were run. Figures 9 and 10 show the steady-state scalar flux for
group 0 where the transparency in the plots is determined by the magnitude of the corresponding scaled sensitivity.
The more sensitive the solution, the more opaque the slice planes are in the plots. For the time-dependent problem, the
initial flux was identically zero, and the solution was integrated in time from 0 to 9:5� 10�8 seconds, essentially run
until a steady state was reached. Figures 11 through 16 show the time dependent history of three local detectors placed
in the geometry along with upper and lower bounds obtained using the calculated scaled sensitivities with respect
to either �a;0 or �s;0;0 as representative sensitivity calculations. If d(t) is the detector value at time t and s(t) the
corresponding scaled sensitivity, then the upper and lower bounds are calculated using d(t) + :15 � s(t) for the upper
bound and d(t)� :15 �s(t) for the lower bound. As �a appears directly in the definition of a detector, it is not surprising
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TABLE 7

Nominal Scattering Cross Sections for Multi-Group Test Problem (in cm�1).

Dest/Src Group 0 Group 1 Group 2

Group 0 3.17672e-02 0.00000e+00 0.00000e+00
Group 1 1.92501e-02 3.01146e-02 0.00000e+00
Group 2 2.65110e-03 1.10446e-02 1.60951e-02

TABLE 8

Detector Region Boundaries for Multi-Group Test Problem.

Detector XMIN XMAX YMIN YMAX ZMIN ZMAX

1 55 60 55 60 55 60
2 45 50 40 50 40 50
3 40 45 40 45 40 45

TABLE 9

Statistics for Multi-Group Test Problem.

RUN NST NRE NLI Run Time (seconds)

	 only 492 1075 514 2182
	 and @	=@�a;0 sensitivity 472 1340 816 4191
	 and @	=@�s;0;0 sensitivity 511 1586 1015 4786

that the detector value would be more sensitive to �a rather than �s, and the plots reinforce this fact. The detector
regions are defined in Table 8, and the cost and statistics for the time dependent calculations are given in Table 9. The
counters in Table 9 are: NST = number of time steps, NRE = number of F (t;	; _	) evaluations, NLI = number of
GMRES linear iterations, and the run time in seconds. The runs were all done using the IBM Blue Pacific machine at
Lawrence Livermore National Laboratory. As can be seen from the run times, the cost of calculating the sensitivities
is roughly twice that of the cost of performing the time dependent 	 calculation.

6.3.1. Analysis of the Three-Group Steady-State Test Problem

For the three-group steady-state test problem, 250 LHS Monte Carlo (MC) runs were done for each of two uncer-
tainty assumptions: one in which the nine non-zero cross sections of Tables 6 and 7 were sampled from Gaussian
distributions for 10% standard deviations relative to their respective nominal values and one in which the errors were
assumed to be 30%.

Our analysis of the steady-state uncertainty quantification is based on the integrated particle flux ~ defined in (10). In
Figure 17a, we confirm that the probability density function for ~ is approximately Gaussian, indicating the potential
of a good agreement between uncertainty quantification by use of linear sensitivities (LS) and uncertainty estimates
by Monte Carlo (MC) methods. This conclusion follows directly from use of (13) to evaluate the LS estimates.
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FIG. 9. Group0 scalarflux for multigrouptestproblemshowing scaledsensitivity with respectto > ?yk ; .

FIG. 10. Group0 scalarflux for multigrouptestproblemshowing scaledsensitivity with respectto > A#k ; k ; .
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FIG. 11. Local detector #1 response with estimated error bounds obtained using the scaled �a;0 sensitivity.
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FIG. 12. Local detector #2 response with estimated error bounds obtained using the scaled �a;0 sensitivity.
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FIG. 13. Local detector #3 response with estimated error bounds obtained using the scaled �a;0 sensitivity.
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FIG. 15. Local detector #2 response with estimated error bounds obtained using the scaled �s;0;0 sensitivity.
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FIG. 17. (a) Probability density function for the integrated 3-Groups flux ~ MC for 250 Monte Carlo runs with assumed 30% cross section
standard deviations. (b) Scatter plot of ~ LS relative to ~ MC for the same cases as in (a).

TABLE 10
Comparison of means and standard deviation for the three-group steady-state test problem. ~ MC were evalu-
ated via full Monte Carlo runs. ~ LS were evaluated via use of (13) and (10). The last column gives the percentage
difference in the standard deviations estimated via the LS method relative to the standard deviation from the
MC method.

Sample Number Nominal Mean Mean Std Dev Std Dev Percent %�
Std Dev Samples ~ ~ MC

~ LS ~ MC
~ LS in Std Dev

10% 250 2.2434e+12 2.2425e+12 2.2433e+12 3.6940e+10 3.6931e+10 -2.3693e-02
30% 250 2.2434e+12 2.2364e+12 2.2432e+12 1.1289e+11 1.1079e+11 -1.8555e+00

Table 10 compares the mean and standard deviation of ~ calculated from the MC results with the same statistics
from the LS approximation. These data are shown for both the 10% and 30% cross section uncertainties. For the
10% case, the difference between the standard deviation estimates is negligible (<0.025%). For the 30% case, the
corresponding difference is still small (<2%), indicating that the linear sensitivity approach remains quantitatively
useful. To summarize the relationship between ~ LS and ~ MC , Figure 17b presents a scatter plot for the 30% standard
deviation case.

A contributing motivation for uncertainty quantification is determination of how to most effectively reduce the
uncertainty in a diagnostic output such as ~ . By estimating the dependence of the total uncertainty on individual cross
sections, guidance is gained on the greatest needs for reduction of the uncertainty in input parameters, either by further
measurements or refinements in theoretical calculations. We compare the importance of individual cross sections in
explaining the variance of ~ in Table 11. The rows labeled “Corr” give Pearson’s correlation coefficient between ~ 

and the cross section in the column heading. This coefficient reflects the degree of linear relationship between two
variables.

To compare differences between the MC and LS analyses, we have calculated the normalized sensitivities (S= ~ 0)
from MC runs (SMC) and direct solution of the sensitivity equations (SLS). From our deterministic linear sensitivity



28 BROWN, GRANT, AND WOODWARD

TABLE 11
This table presents two measures of the importance of individual cross sections in explaining the Monte Carlo (MC)
variance of ~ for the three-group test problem. Data are from 250 MC cases. The rows labeled “Corr” give Pearson’s
correlation coefficient between ~ and the cross section in the column heading. This coefficient reflects the degree of
linear relationship between two variables. The following rows present the normalized sensitivities (S= ~ 0) from least
squares regression of MC runs (SMC ) and direct solution of the sensitivity equations (SLS). ~ 0 is the nominal value of
~ . In calculating SMC , linear regressions were passed through ~ 0 with the linear slope being the regressed sensitivity.

Corr/ Sample �a;0 �a;1 �a;2 �s;0;0 �s;0;1 �s;0;2 �s;1;1 �s;1;2 �s;2;2
Sens Std Dev

Corr 10% -8.939e-2 1.873e-2 -8.321e-2 7.659e-1 1.698e-1 -3.353e-1 5.577e-1 1.208e-1 1.472e-1
Corr 30% -8.340e-2 9.689e-3 -7.995e-2 7.680e-1 1.556e-1 -3.298e-1 5.379e-1 1.128e-1 1.343e-1

SMC 10% -1.479e-2 3.071e-3 -1.363e-2 1.256e-1 2.768e-2 -5.613e-2 9.143e-2 1.988e-2 2.387e-2
SLS 10% -1.506e-2 -2.580e-3 -8.786e-5 1.389e-1 5.427e-2 -1.239e-3 7.436e-2 8.783e-3 2.542e-2
SMC 30% -1.405e-2 1.586e-3 -1.332e-2 1.281e-1 2.583e-2 -5.616e-2 8.967e-2 1.887e-2 2.221e-2
SLS 30% -1.506e-2 -2.580e-3 -8.786e-5 1.389e-1 5.427e-2 -1.239e-3 7.436e-2 8.783e-3 2.542e-2

calculations, we can immediately compute the sensitivity of ~ to various cross sections by use of equations (13) and
(10). In contrast, estimating the sensitivity of ~ to individual cross sections from the Monte Carlo results requires
least squares linear regression, the resulting slope being the desired sensitivity. In making these regressions, we have
constrained the resulting lines to pass through ~ 0 � ~ (��a; ��s), the nominal value of ~ . While it is beyond the scope
of our analysis for this paper, we note that the sensitivities obtained from such regression analysis could be modified
by use of different data weighting factors, giving more or less weight to outliers.

To illustrate the application of these sensitivities (both MC and LS) in the context of the total MC variance of ~ ,
Figure 18 contains plots of the estimated linear dependence of ~ on �a;0 (a) and �s;0;0 (b). The red line, where distinct,
shows the variation in ~ based on the MC sensitivity estimate. The blue line is from use of the direct linear sensitivity
(LS) calculations. In Figure 18a the MC and LS lines are essentially coincident.

7. CONCLUSIONS

We have presented a new method for the quantification of uncertainties of BTE solutions. Results on both one- and
three-group test cases show that the resulting uncertainties differ from those computed using a Monte Carlo technique
by only a fraction to a couple of percent. The new method requires computation of solution sensitivities during the
solution computation. Solving for sensitivities along with solutions increases run time by a factor of 2-3, but gives a
much faster uncertainty measure than the Monte Carlo method which requires hundreds of runs.
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